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Applications

• Supersonic film cooling for the J-2X nozzle extension

– Large Eddy Simulations (LES) using OpenFOAM

• Virtual probe

– Build a transfer function connecting measured fluctuations with 

upstream fluctuations

– With the help of LES (using OpenFOAM)
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Why OpenFOAM?

• Getting very popular in

– Academia &

– Industry

• Why?

– Free

– Open source

– Easy to extend/develop

– Several models for e.g., turbulence, combustion

– Unstructured meshes

– Scalability up to 1000s of CPUs

3TFAWS 2015 – August 3-7, 2015 – Silver Spring, MD

http://www.openfoam.com/



Assessment – why?

• OpenFOAM already used for flows with STI*** e.g.,

– Vuorinen et al. (PoF, 25, 2013)

• But a systematic study of its efficacy is required

– Similar to what Johnsen et al. (JCP, 229, 2010) did for high 

resolution DNS codes/methods

• Because STI*** impose conflicting requirements on CFD 

codes

– For resolving turbulence

• Numerical dissipation should be minimized

– For capturing shocks

• Numerical dissipation should be introduced
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*** STI – shock turbulence interactions http://shocks.stanford.edu/shock_turbulence.html



Scope

• Evaluate different

– Solvers/approaches inside OpenFOAM

– Time stepping schemes

– Limiters
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Solvers/approaches

• rhoCentralFoam – centralFoam

– Ready made

– No reported studies focused on STI***

– Central schemes e.g., Kurganov et al. (JCP, 160, 2001)

– Relatively easy for polyhedral framework

– Validation & verification, Greenshields et al. (IJNMF, 63, 2010)

• artificialViscosityFoam - artificialFoam

– Already used e.g., Vuorinen et al. (PoF, 25, 2013)

– Not ready made but fairly easy to code

– Cook et al. (JCP, 203, 2005) & Bhagatwala et. al (JCP, 228, 2009)

6TFAWS 2015 – August 3-7, 2015 – Silver Spring, MD

*** STI – shock turbulence interactions



Time stepping schemes

• Generally

– Schemes like fourth order accurate Runge Kutta (RK4) are used 

in research

– But codes like OpenFOAM, FLUENT don’t offer those

• Schemes

– Available

• Implicit Euler (1st order)

• OpenFOAM’s “backward” (2nd Order)

– Implemented

• RK4 (4th order)
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Assessment – how?

• Suite of carefully chosen benchmark cases, Johnsen et al. 

(JCP, 229, 2010)

– 3D Taylor-Green vortex

– Shu-Osher problem (1D)

– Shock-vorticity/entropy wave interaction (2D)

– Noh problem (3D)
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3D Taylor-Green vortex

• Initial conditions

• Periodic boundary conditions

• Euler equations

• Well resolved at t=0

• t>0, vortex stretching, smaller scales

• Goals

– Evaluate stability for severely under-resolved motions

– Check measure of kinetic energy preservation
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3D Taylor-Green vortex

• Verification

• Normalized kinetic energy evolution

10TFAWS 2015 – August 3-7, 2015 – Silver Spring, MD

Source T-G 

energy t=5

Brachet et al. [1] 1

Hybrid [2] 1

ADPDIS3D [2] 0.998

Stan [2] 0.976

Stan-I [2] 0.976

WENO [2] 0.916

OpenFOAM 1

1. M.E. Brachet et al., J. Fluid Mech. 130 (1983) 411– 452

2. E. Johnsen et al., J. Comput. Phys. 229 (2010) 1213–37



3D Taylor-Green vortex

• Comparing solvers

• centralFoam preserves Kinetic Energy (KE) but 

artificialFoam does not
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Source T-G 

energy t=5

Brachet et al. [1] 1

centralFoam 1

artificialFoam 0.972

1. M.E. Brachet et al., J. Fluid Mech. 130 (1983) 411– 452



3D Taylor-Green vortex

• Comparing time stepping schemes

• Solver crashes with Euler and backward schemes
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Source T-G energy 

t=5

Brachet et al. [1] 1

Implicit Euler -

OpenFOAM’s backward -

RK4 1

1. M.E. Brachet et al., J. Fluid Mech. 130 (1983) 411– 452



Shu-Osher problem (1D)

• Initial conditions

• Boundary conditions

– Zero gradient

• Euler equations

• Goals

– Evaluate ability to capture 

• a shock wave

• its interaction with an unsteady density field

• the waves propagating downstream of the shock
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Shu-Osher problem (1D)

• Verification
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Shu-Osher problem (1D)

• Comparing solvers on a coarse grid

• Again centralFoam performs better than artificialFoam
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Shock-vorticity/entropy wave interaction (2D)

• Initial conditions

• Inflow boundary condition

• Euler equations

• Goals

– Evaluate ability to capture

• Shock-vorticity/entropy wave interaction
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Shock-vorticity/entropy wave interaction (2D)

• Verification

•
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Shock-vorticity/entropy wave interaction (2D)

• Comparing solvers on a coarse grid

• centralFoam is better
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Shock-vorticity/entropy wave interaction (2D)

• Comparing limiters on a coarse grid

• van Leer is better
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Noh problem (3D)

• Initial conditions (ICs)

• Analytical Solution (AS)

• Boundary conditions, from ICs and AS

• Euler equations

• Goals

– Evaluate ability to predict

• Post-shock density

• Shock speed

• Spherical shape on a cartesian grid
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Noh problem (3D)

• Verification

• centralFoam, RK4 and van Leer
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Source rmean

Exact 64.0

Hybrid [1] 63.2

ADPDIS3D [1] 63.3

Stan [1] 55.1

Stan-I [1] 54.9

WENO [1] 63.3

OpenFOAM 63.1

1. E. Johnsen et al., J. Comput. Phys. 229 (2010) 1213–37



Concluding remarks

• Overall, OpenFOAM seems to be suitable for handling 

Shock Turbulence Interactions (STI)

– centralFoam performs better than artificialFoam

– Fourth order accurate Runge Kutta (RK4) time stepping scheme is 

more stable than the schemes offered by OpenFOAM

– van Leer limiter provides best predictions
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Future work

• Compare performance on canonical shock-turbulence 

interaction case

• Compare the solvers in terms of computational cost

• Compare performance on unstructured grids

– Tetrahedral 

– Polyhedral

• Evaluate recent artificial diffusivity based methods e.g., 

Guermond et al. (JCP, 230, 2011)
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Thank you; questions?
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